

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/test-lalanv/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/test-lalanv/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Tools

The following testing tools where used:

	Etc-client in regular sync mode running a private chain

	Parity nodes

	CPU only mining with EthMiner (https://github.com/Genoil/cpp-ethereum/tree/108)

Mist Features tested

Feature: Number of peers connected

Scenario: Connected and disconnected multiple peers.

Known methods involved: net_peerCount.

Feature: Account creation

Scenario: Created accounts and checked that they were properly listed on Mist.

Known methods involved: personal_newAccount

Feature: Send value tx

Scenario: Sent a tx and checked that tx confirmation progressed (till it got 12 confirmations). Also used Postman to check that the correct extra data was added to the tx (as selected on Mist).

Known methods involved: eth_estimateGas, eth_syncing (for tx confirmation)

Feature: Deploy a contract

Scenario: Using an existing account, sent a contract creation tx. Also used Postman to check that the correct extra data was added to the tx (as selected on Mist).

Known methods involved: eth_estimateGas, eth_syncing (for tx confirmation)

Feature: Transaction confirmation progressbar

Scenario: Sent a transactions and seen that tx confirmation progress was increasing and tx information was correct. Also, if it’s a contract creation tx, we have seen address was correct and it was added to watchlist.

Feature: Send tx for calling contract methods and watch contract events

Scenario: With contract created, Mist interface was used for calling several of it’s methods, which were checked that they were getting confirmed. This methods involved events, so “Watch contract methods” was turned on to check that this events were properly detected.

Known methods involved: Same as when sending txs.

Feature: Call constant contract methods

Scenario: With contract created, it was tested that the values shown for the constant functions were correct, which required calling contract methods that changed them.

Known methods involved: eth_call.

Feature: Create txs but starting miner only after the txs were created

Scenario: Without the miner yet started, several transactions were created (testing specially including transactions from the same sender), after which the miner was connected to our node and it was checked that the transactions were included in blocks and getting confirmed.

Known methods involved: Same as when sending txs.

Feature: Sync to peer (with only regular sync)

Scenario: Connected the node to a parity node (and on the mainnet) and checked that Mist notified correctly that our client was syncing (and showing a correct syncing state).

Known methods involved: eth_syncing.

Feature: Connect to miner

Scenario: Connected miner to the node and checked that the blocks mined were being detected by Mist.

Known methods involved: eth_syncing.

Feature: Balance change when mining

Scenario: Configured an existing account as coinbase and started the miner. Account balance was constantly increasing.

Issues detected

	Currently Mist only works with our client if regular sync is enabled, when fast sync is enabled, methods like eth_getBalance fail.

	After creating an account and starting mining, we need to restart Mist to see increasing balance. It seems it’s a Mist related issue as it happened with Parity too

	Mist keeps returning errors when trying to send a transaction related to gas estimation. This seems to be a mist problem as have seen it using Parity.

Prerequisites

A Java Virtual Machine with version 1.8.x.

A Java Virtual Machine (JVM) is required to run the client. The version must be 1.8.x. The client has not been tested with JVM 1.9.

To check the JVM version use java -version. For example on a recently created EC2 small instance the response is ...

java version "1.8.0_131"
Java(TM) SE Runtime Environment (build 1.8.0_131-b11)
Java HotSpot(TM) 64-Bit Server VM (build 25.131-b11, mixed mode)

Disk Space

The database for the Ethereum Classic chain take approximately 15G of disk space.
Appropriate overhead will be needed for the chain to grow into the future.
An SSD of at least 25G is recommended.

Memory (RAM)

The mantis client has been tested extensively on EC small instances with 2G of RAM.
This is sufficient to run the client and the miner (however it is not sufficient to build the miner)

Downloads

The Client Binary

This client is distributed as a zip archive and can be downloaded from the releases [https://github.com/input-output-hk/etc-client/releases] section of the github repository.

The Bootstrap Database (Optional)

A bootstrap database has been created to support the client.

This file is available for download from S3.

mantis-cli-beta1-bootstrap-db.zip [https://s3.eu-central-1.amazonaws.com/iohk.etc-client.snapshots/mantis-cli-beta1-bootstrap-db.zip]

Or from a command line use ...

wget https://s3.eu-central-1.amazonaws.com/iohk.etc-client.snapshots/mantis-cli-beta1-bootstrap-db.zip

Checksum the Bootstrap Database Archive

When the file is fully downloaded (on linux) run the following command

md5sum mantis-cli-beta1-bootstrap-db.zip

This should result in a line identical to the following ...

3a7bceeb1816de2e481d6a280c73e4e1 mantis-cli-beta1-bootstrap-db.zip

Compare the results of the line on your terminal to the above line, the checksum should be identical.

The default folder for data is ~/.mantis. In order to use the downloaded database create this folder and cd into it. Then unzip the file using...

unzip <path to zip file>/mantis-cli-beta1-bootstrap-db.zip

Install the Client

unzip the client archive file downloaded from the previous section. This will create a folder structure as follows -

mantis-0.3-cli-beta
│
└───bin
│
└───conf
│
└───lib

The lib folder contains all the jars required to run the client, the conf folder contains the configuration files needed to alter the user settings of the client and the bin folder contains the scripts to start the client.

Run the Client

From the mantis-0.3-cli-beta folder use

./bin/mantis

This command will run the client in the foreground with settings as dictated in the conf folder files.

Note that for long running processes on remote machines it is recommended to use tmux [https://www.rosehosting.com/blog/getting-started-with-tmux/] or equivalent in order to prevent the client stopping when the terminal is shut down.

Changing the Default Settings

Following the instructions outlined above including using the bootstrap database should result in a startup similar to the following
[image:]

The first block should be around 4.1 million as this is where the snapshot was taken. If you have not used the snapshot
The default datadir is ~/.mantis. To change this edit the storage.conf file in the conf folder.

[image:]

Un-comment the datadir configuration and replace the value with the preferred value.

datadir = ${user.home}"/.mantis"

 A list of variations from yellow paper.

	seed calculation for DAG (AS)

	PR to YP, (R) corrected in the YP [https://github.com/ethereum/yellowpaper/issues/299]

	check ticket ECDSA sig. OP code in EVM (Precompiled contract) uses old signing scheme

	Discrepancies in the JSON RPC, spec is not what’s implemented. (filters...LG)

Goal

Check parity sync from our client

Testing environment

Hardware: Amazon EC2-Instance

Mem: 2GB

OS: Ubuntu 16.04.2, kernel 4.4.0-1022-aws

JVM: oracle java version “1.8.0_131”

Parity: version Parity/v1.6.10-stable-1a5b176-20170721/x86_64-linux-gnu/rustc1.18.0

Mantis config

We started a seed node based on a prebuilt etc chain bootstrap database running up to date with latest network block

Parity configuration

parity --chain classic --jsonrpc-interface 127.0.0.1 --jsonrpc-port 8545 --author 00F538Bb0d2dc3F6DEd39Fc0279099D8cD43F956 --geth --base-path ~/parity_data --logging trace --jsonrpc-apis parity_accounts,web3,eth,net,parity,traces,rpc,parity_set,personal --mode active --no-discovery --bootnodes enode://0eebcc4c199363402dbe2c32257c2a3bb7754ab49b8fefd931f30fcd909b6011eba4801deea5f1260ed3c0a1cac56b0f0778c4723631ac846c4e54882d816a45@52.214.185.231:9076 --network-id 1

Version

commit 6a09b0d3567981fe244cd59d41792f30515f4240
Author: Radek Tkaczyk <radek.tkaczyk@iohk.io>
Date: Wed Jun 28 16:24:41 2017 +0200

 unify test timeouts: updated a few missed

Test Log

	28/07
	time: 11:02

	status: connected to our fast sync node

	29/07
	time: 9:22

	status: best block number 94656

	31/07
	time: 9:27

	status: best block number 94656

	notes: it seems parity got stucked while syncing

Result

After doing some analysis we found that parity got stucked because our seed node was missing block body #94657. This issue was fixed in https://github.com/input-output-hk/etc-client/pull/268

 To run mantis with private network you have to start with:

mantis -Dconfig.file=path_to_configuration_file.conf

You have to update configuration_file.conf to set correct bootstrap node addresses and patch to custom genesis file (with parity conf you also have to update bootstrap nodes)

To run multiple nodes on single machine you have to set unique ports for each nodes as well as unique datadir

Example application configuration file for mantis is (configuration_file.conf)

include "application.conf"
include "network.conf"
include "storage.conf"
include "blockchain.conf"
include "sync.conf"
include "misc.conf"

mantis {
 datadir = ${user.home}"/.mantis_prv1"
 network.server-address.port = 9078
 network.discovery.port = 30305
 network.rpc.port = 8548
 sync.do-fast-sync = false

 network {
 discovery.bootstrap-nodes = [
 #put here addresses of other nodes in network
 "enode://f2345158a9e4a6c657ea93cc2eba67cee3d3e178afe5266813fec3ca984385cb44afa6a18a1987c491a9eb227661e8a36d73d773a285c53a9e6a8922b1dcf0c1@192.168.1.207:30303"
]

 peer.network-id = 10
 }

 blockchain {
 frontier-block-number = "0"
 homestead-block-number = "494000"
 eip150-block-number = "1783000"
 eip155-block-number = "1915000"
 eip160-block-number = "1915000"
 difficulty-bomb-pause-block-number = "1915000"
 difficulty-bomb-continue-block-number = "3415000"

 dao-fork-block-number = "9999999999"
 dao-fork-block-hash = "f376243aeff1f256d970714c3de9fd78fa4e63cf63e32a51fe1169e375d98145"

 chain-id = "33"

 #update this to correct path
 custom-genesis-file = "/path_to/prv.json"
 }
}

Example genesis configuration for mantis is (prv.json)

{
 "difficulty": "0x200",
 "extraData": "0x00",
 "gasLimit": "0x2fefd8",
 "nonce": "0x0000000000000042",
 "ommersHash": "0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347",
 "timestamp": "0x0",
 "coinbase": "0x00",
 "mixHash": "0x00",
 "alloc": {
 "d7a681378321f472adffb9fdded2712f677e0ba9": {"balance": "1606938044258990275541962092341162602522202993782792835301376"}
 }
}

to start mining you need external miner, for example ethminer
to start mining with ethminer run (-C is for cpu only mining) ethminer -C -F 127.0.0.1:8546

For parity you can use this custom chain file (parity_prv.json):

{
 "name": "prv",
 "engine": {
 "Ethash": {
 "params": {
 "gasLimitBoundDivisor": "0x0400",
 "minimumDifficulty": 131072,
 "difficultyBoundDivisor": "0x0800",
 "durationLimit": "0x0d",
 "blockReward": "0x4563918244F40000",
 "registrar": "",
 "homesteadTransition": 494000,
 "eip150Transition": 1783000,
 "eip155Transition": 1915000,
 "eip160Transition": 1915000,
 "ecip1010PauseTransition": 1915000,
 "ecip1010ContinueTransition": 3415000,
 "eip161abcTransition": "0x7fffffffffffffff",
 "eip161dTransition": "0x7fffffffffffffff"
 }
 }
 },
 "params": {
 "accountStartNonce": "0x00",
 "maximumExtraDataSize": "0x20",
 "minGasLimit": "0x1388",
 "networkID": "0xa",
 "chainID": "0x33",
 "eip98Transition": "0x7fffffffffffff"
 },
 "genesis": {
 "seal": {
 "ethereum": {
 "nonce": "0x0000000000000042",
 "mixHash": "0x00"
 }
 },
 "difficulty": "0x200",
 "author": "0x00",
 "timestamp": "0x00",
 "parentHash": "0x00",
 "extraData": "0x00",
 "gasLimit": "0x2fefd8",
 "ommersHash": "0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347"
 },
 "nodes": [
 //put here addresses of other nodes in network
"enode://c2328c3e7857106585dbb59b712ac2ab9443d4f0b55b77451fbf33c0dda58b882f0683c4c9222cbf8d1d6893e7f926d487630810202a2c75ec6dd996dbe84715@192.168.0.12:30303"
],
 "accounts": {
 "d7a681378321f472adffb9fdded2712f677e0ba9": {
 "balance": "1606938044258990275541962092341162602522202993782792835301376",
 "nonce": "0"
 }
 }
}

to start parity with this custom chain use parity --chain /path_to/parity_prv.json

Stop syncing, start testing!

Even Fast Sync - downloading a state trie snapshot from the peer network can take considerable time, anywhere from about seven hours to a few days depending on the network state, the quality of the network connection and the hardware used to store the data.

In order to shorten the time needed to get a mantis client up to date with the most recent bloc in the network we provide a bootstrap zip file containing a mantis database pre loaded with a recent version of the chain. Unzip this to the datadir folder ($HOME/.mantis by default) check the md5sum checksum and then start up the client. The client will begin to process transactions and blocks at the point the database snapshot was taken reducing the time needed to sync to the most recent block to minutes rather than hours ...

mantis-cli-beta1-bootstrap-db [https://s3.eu-central-1.amazonaws.com/iohk.etc-client.snapshots/mantis-cli-beta1-bootstrap-db.zip]

mantis-cli-beta1-bootstrap-morden-db [https://s3.eu-central-1.amazonaws.com/iohk.etc-client.snapshots/mantis-cli-beta1-bootstrap-morden-db.zip]

 The purpose of this page is to keep track of all the blocks that failed to execute while we were working on TX execution. This is just a history of problems and fixes. It should help us deal with possible regressions and provide more insight into interpretations of YP.

All transactions to present (June 2017) successfully executed ...!

3003036

TxsExecutionError(Left(TxsExecutionError(Account of tx sender 0xdfce88c609d54021d4ca78a550fc6ffa621ece1d not found))), in block 3003036

The issue was that we required sender account of a transaction to be present in MPT before transaction execution, but if we are not transferring ether it is possible to issue transaction which costs 0 ether by setting the gas price to 0.
In this case, we should create sender account with nonce 0, balance 0 and save it in MPT before transaction execution. PR #173 [https://github.com/input-output-hk/etc-client/pull/173]

2420342

We did not pass addresses already market to delete to CALLs, it allowed for multiple refunds for deleting the same address. PR #172 [https://github.com/input-output-hk/etc-client/pull/172]

1149150

It was related to not checking if v from ECDSARECOVER has correct value (27 or 28) and precompiled contract was not failing when it should. PR #170 [https://github.com/input-output-hk/etc-client/pull/170]

549413

The stack arguments to instructions CALLDATALOAD, CALLDATACOPY, CODECOPY, EXTCODECOPY were optimistically/naively converted to Int resulting in potentially deadly overflows. PR #169 [https://github.com/input-output-hk/etc-client/pull/169]

505404

We used a wrong hash function for the precompiled contract @ 0x02. It should be SHA-256, not KEC-256 (SHA3). PR: #168 [https://github.com/input-output-hk/etc-client/pull/168].

299804

When calculating the gas cost of a CALL opcode, the use of UInt256 for it caused an overflow that resulted in the contract being executed instead of an OutOfGas exception. PR: #167 [https://github.com/input-output-hk/etc-client/pull/167].

244793

It’s another manifestation of the problem that occurred in block 68460. #164 [https://github.com/input-output-hk/etc-client/pull/164]

243826

When executing a contract init, the destination address might have already received funds. See YP EIP-150 REVISION eq (86).PR: #162 [https://github.com/input-output-hk/etc-client/pull/162]

196647

A small bug in gas calculation for CALL prior to EIP-150 adoption. PR: #160 [https://github.com/input-output-hk/etc-client/pull/160]

179332

MSIZE was returning memory size to the exact byte, rather than rounded up to the next 32-byte word. PR: #154 [https://github.com/input-output-hk/etc-client/pull/154]

153259

The contract creating TX the payload was used as input data to the VM execution (it should be empty). PR: #159 [https://github.com/input-output-hk/etc-client/pull/159]

81383

Gas refunds were not propagated from recursive VM calls (CREATE, CALL). PR: #158 [https://github.com/input-output-hk/etc-client/pull/158]

73276

Wrong handling of deleted accounts. PR: #150 [https://github.com/input-output-hk/etc-client/pull/150]

68460

~~This was an example of YP being a little vague. It was not clear what was supposed to happen when the last stack argument (outSize) is greater than data returned from called contract. Now we know outSize should determine the memory size. See the the memory related equations in definition of CALL. PR: #154 [https://github.com/input-output-hk/etc-client/pull/154]~~

The above conclusion was incorrect (while the fix in PR #154 helped in this particular case). YP is actually clear about it, though somewhat inconsistent about updating memory contents vs expanding the memory. See equations for μ′m and μ′i in the CALL definition (this may be required to know the memory related gas cost a priori, although another way would be to refund it). PR: #164 [https://github.com/input-output-hk/etc-client/pull/164]

62102

SMOD opCode was wrong

53145

Logs were not discarded in the event of VM error

50111

Gas refunds were not included in block’s cumulative gas. This may be a bug in YP, see: https://github.com/ethereum/yellowpaper/issues/299
PR: #147 [https://github.com/input-output-hk/etc-client/pull/147]

49157

????

49018

Code deposit gas not handled correctly for contract creating TX

48462

Incorrect handling of value transfer from A to A (same sender and recipient)

47205

Nonce increased twice for contract creating TX

46000

State not rolled back after OOG error

	I started fast sync on EC2 on 14:10 CEST 26th of July with target block 4163902

	On 16:05 it is on 733184 block, no dead loop, no stuck

	Around block 1389840 10:00 CEST 27th of July we blacklisted all peers and we are receiving lot of transactions not targeted at etereum classic chain

	10:05 CEST we unbloacklisted 1 peer and we are syncing again (Block: 1392592/4163902)

	11:32 CEST restart with new configuration lowering the blacklist duration (Block: 1434256/4163902)

	12:16 CEST restart with latest version of application (Block: 1488656/4163902)

	12:25 CEST restart with removed trace from message decoder error (Block: 1491216/4163902)

	12:29 CEST restart with pruning set to archive because fast sync was started without pruning

	12:51 CEST restart update update nodes-per-request 1000 -> 500 (Block: 1507984/4163902)

	13:35 CEST peers are responding with 11:35:07.329 i.i.e.b.s.SyncBlockHeadersRequestHandler - Received 0 block headers in 1556 ms (Block: 1512464/4163902)

	13:37 CEST restart to get better peers, updated connect-max-retries 1 -> 5

	15:03 CEST restart with configuration changes from https://github.com/input-output-hk/etc-client/pull/261/commits/363742a9d358a2c631af61bc40d428258116c1f8 (Block: 1518416/4163902)

	16:39 CEST restart with update nodes-per-request 500 -> 200 (Block: 1547472/4163902)

	17:04 CEST restart with update block-headers-per-request 2048 -> 200 (Block: 1555600/4163902)

	10:55 CEST 28th of July restart with changes from https://github.com/input-output-hk/etc-client/pull/261/commits/b0761e8fa8e50df25e276d67b53b7ea2f16e7474 (Block: 1736792/4163902)

	11:05 CEST restart from empty data dir because blacklisting all peers with message got empty mpt node response for known hashes, target MPT was probably already pruned from peers, target block is 4175269

	13:51 CEST Block: 776848/4175269 State: 3228429/3234860 nodes

	16:37 CEST restart with https://github.com/input-output-hk/etc-client/pull/264 branch (prioritize nodes download because they can be pruned) Block: 1005144/4175269 State: 3238067/3246877 nodes

	17:03 CEST Block: 1042776/4175269 State: 4665247/4671393 nodes

	17:14 CEST we got stuck on timeouts on all fast sync elements but timeouts stopped at 17:29 CEST we suspect that network was under load

	17:33 CEST Block: 1056216/4175269 State: 4902847/4906683 nodes

	17:46 CEST Block: 1074456/4175269 State: 5170859/5174391 nodes

	11:13 CEST 31st of July Block: 3245472/4175269 State: 21775445/21775445 nodes syncing from 1 peer

	19:59 CEST Block: 3628064/4175269. State: 21775445/21775445 nodes. Stack with 0 peers: Peers waiting_for_response/connected: 0/0 (0 blacklisted)

	09:54 CEST restart it was not able to connect to any new peer

	15:43 CEST finished fast sync and switched to regular sync it is now on 4176799th block

	14:20 CEST 31st of July started second EC2 instance with fast sync with disabled discovery, target block is 4194826

	18:06 CEST Block: 430008/4194826. State: 4216017/4223787 nodes.

	19:53 CEST Block: 432632/4194826. State: 4246017/4253101 nodes.

	09:54 CEST 1st of August Block: 731896/4194826. State: 12391323/12406325 nodes, connected to 6 peers

	15:58 CEST Block: 736696/4194826. State: 14047204/14057012 nodes. Connected to 6 peers

	10:15 CEST 2nd of August Block: 841464/4194826. State: 18938830/18951608 nodes. Connected to 6 peers

	14:16 CEST Block: 841464/4194826. State: 20012279/20019682 nodes. Connected to 6 peers

	11:48 CEST 3rd of August Block: 1790520/4194826. State: 21781789/21781789 nodes. Connected to 6 peers

	12:13 CEST Block: 1797200/4194826. State: 21781789/21781789 nodes. Peers waiting_for_response/connected: 2/6 (4 blacklisted) we started blacklisting peers because of timeouts on block bodies and receipts

	12:21 CEST Block: 1797728/4194826. State: 21781789/21781789 nodes. Peers waiting_for_response/connected: 5/5 (0 blacklisted). no more blacklisting

	07:07 CEST 4th of August Block: 2773696/4194826. State: 21781789/21781789 nodes. Peers waiting_for_response/connected: 5/6 (1 blacklisted).

	13:34 CEST Block: 2776216/4194826 State: 21781789/21781789 nodes. Peers waiting_for_response/connected: 5/6 (1 blacklisted).

	16:35 CEST Block: 3004252/4194826. State: 21781789/21781789 nodes. Peers waiting_for_response/connected: 5/6 (1 blacklisted).

	10:45 CEST 7th of August Block: 3004252/4194826. State: 21781789/21781789 nodes. Peers waiting_for_response/connected: 1/6 (0 blacklisted). Asking for block headers but getting empty responses from peer Received 0 block headers in 268 ms, restarted, now it is syncing again

	16:46 CEST Block: 3004252/4194826. State: 21781789/21781789 nodes. Peers waiting_for_response/connected: 5/6 (1 blacklisted).

A note on how transactions are executed

The first thing to note is that transactions (txs) are executed in two places. The first and only time a transaction should fail is when a miner attempts to create a block by executing all the transactions in the block. The second is when a block of transactions from the past is downloaded as part of chain synchronization. In this case the state needs to be updated with all historical transactions up to the present in order to acquire an up to date state. Even though in the second case a transaction must be valid, as it’s already in a block, we still validate the transactions according to the rules so that we know our state has been legally arrived at.

Transactions execute sequentially. Given a block of transactions and a state trie, the state trie is passed to the first transaction in the block, that transaction executes altering the state and the new state is passed to the next transaction. When all transactions have executed the new state trie is now the state of the ledger and will be used in subsequent block processing.

When a transaction executes (after the account is debited and the sig checked etc) contract code may call other contracts. These message calls are blocking and may be re-entrant.
If a contract changes a value available via it’s public interface and calls a second contract which access the original contract’s public interface, which value does it see? ##TODO Check!

Gas and Errors

A transaction must provide a contract with ‘gas’ to pay for it’s execution. If the gas is insufficient to pay for the contracts execution the transaction is abandoned and any state changes attempted by the transaction are abandoned. The state passed to the next transaction is the same as the state passed to the abandoned transaction. Similarly if a contract throws, the gas is consumed and the state changes abandoned.

If a message call (ie when a contract calls another contract) throws or runs out of gas a ‘0’ or false is returned on the stack for the calling contract to deal with.

Testing environment

Hardware: Clevo P751ZM

CPU: Intel(R) Xeon(R) CPU E3-1231 v3 @ 3.40GHz,

Mem: 16GB

Disk: Crucial 275GB SATA SSD MX300 M.2 2280

OS: Fedora 26, kernel 4.11

openjdk version “1.8.0_131”

Default config

Result

Fast sync finished in ~20 hours.

Datadir size at block 4166064 is ~15G.

Syncing continues in “regular” mode.

	Sync was started on EC2

	Got error while executing block 619153 there was difference in gas consumed by contract it was fixed (it was related to big memory address being converted to 32 bit int)

	EC2 run out of disk space, restarted with more disk space attached

	got stack overflow error because of to small stack size pre JVM process in transaction that was calling recursively subcontract

	got failure in block 1805823 - wrong gas consumed (it was fixed)

	EC2 fully synced

 Run was on macOs sierra
started 3rd of August 13:55 CEST, finished 12:08 CEST 4th of August
we had issue with missing block header because node was killed, it was stuck and not responding for ~8h at night

Set up

Using an EC2 small instance with 60G of general purpose SSD.

java -version reports

java version "1.8.0_131"
Java(TM) SE Runtime Environment (build 1.8.0_131-b11) Java HotSpot(TM) 64-Bit Server VM (build 25.131-b11, mixed mode)

Client built on Monday 31 July using branch beta1 and command sbt dist

Bootstrap database downloaded from S3 [https://github.com/input-output-hk/etc-client/wiki/Install-Client-on-Linux-Using-Bootstrap-Chain-Database] using

wget https://s3.eu-central-1.amazonaws.com/iohk.etc-client.snapshots/grothendieck-bootstrap-jul27-db.zip

File unzipped to ~/.grothendieck folder.

Client unzipped to ~/etc-client-dist folder.

Client executed in tmux session from etc-client-0.1 folder using ./bin/etc-client.

No changes made to configuration.

Syncing

Sync began at 11.27 UTC on Block 4170219 (picked up from bootstrap database)

11:27:08 Starting block synchronization
11:27:08 Block: 4170219. Peers: 0 (0 blacklisted)

12.13 - synchronization progressing as expected ...

12:13:20 Block: 4174651. Peers: 7 (0 blacklisted)
12:13:21 Received 64 block bodies in 926 ms

13:07:08 Block: 4180883. Peers: 7 (0 blacklisted)

14:18:43 Block: 4187651. Peers: 7 (1 blacklisted)

Client begins processing blocks in ‘real time’...

15:21:42 Block: 4195387. Peers: 9 (0 blacklisted)
15:21:42 Received 80 block headers in 95 ms
15:21:44 Received 80 block bodies in 2138 ms
15:22:25 Block: 4195467. Peers: 9 (0 blacklisted)
15:22:25 Received 1 block headers in 59 ms
15:22:25 Received 1 block bodies in 15 ms
15:22:25 Received 0 block headers in 14 ms

Test continues to stay up to date overnight ...

09:44:38 Block: 4200127. Peers: 3 (0 blacklisted)

Test stopped!

 It seems that sending a transaction with a gas limit exceeding block gas limit (currently 4704624) results in the transaction not being mined, even though the actual execution costs less gas than the limit. With such an “invalid” transactions in the network (and in pending tx pool) it’s hard to get any other transaction through. Sending subsequent transactions using rpc sendTransaction method results in assigning a nonce that is one bigger than then previous (pending) transaction. Since the previous transaction will not be mined, the one with higher nonce also won’t be mined. The solution to that is to replace the first transaction with another tx with the same nonce that can be mined.

Additional links:
https://blog.parity.io/announcing-parity-1-7/

 This page tries to list in reverse chronological order the changes in client behavior linking those changes to a particular block number and date

EIP 160

Block 3,000,000 (~ xxx 2016)

Cost of expbyte changed from 10 to 50

EIP 150

Block 2500000 (~ xxx 2016)

Block was never announced, but all clients implement this.

ECIP 1011

Block ??? (~ xxx 2016)

Block was never announced, but all clients implement this. Change to signing transactions.

ECIP 1010

Block ??? (~ xxx 2016)

This change partally happened and general info

EIP 2 (Homestead release)

Block ??? (~ xxx 2016)

CREATE OP changed behavior

.
.
.

EIP xxx

Block xxx (~ xxx 2015)

This change happened and general info

Ethereum Classic Yellow Paper

Block 0 (~ July 2015)

Yellow Paper at time of main net launch [https://github.com/ethereum/yellowpaper]

Testing environment (Small EC2 instance)

Hardware: HVM domU

CPU: Intel(R) Xeon(R) CPU E5-2676 v3 @ 2.40GHz

Mem: 2GiB

Disk: 60GB

OS: Ubuntu 16.04.2 LTS

openjdk version "1.8.0_131"

Version

commit 615ae67dfca31a8a0dbdf2fbbcfe7ddd37bfbd29
Merge: 751db36 023b628
Author: Alan Verbner <alan.verbner@iohk.io>
Date: Wed Jul 26 13:14:35 2017 -0300

 Merge branch 'fix/couldNotInitialiseKeystoreDirectory' into phase/beta1

Scenarios tested with results

Regular sync (with discovery enabled):

Setup

	Config changes:

sync.do-fast-sync = false

Results

Two times regular sync was ran having the following results:

	The remote EC2 instance was left doing regular sync from 2017/07/26 till 12:16 2017/07/27 were the instance was detected to not be syncing. Upon restart the client resumed syncing but got the exception: java.lang.RuntimeException: Could not open table 5353. At that moment the EC2 instance had:

Discovered 152 nodes. Incomming connections: 0. Outgoing connections: 11 (6 of them fully handshaked)
Block height: 152135. Tx hash which failed due to exception: aa6b8c5b787ff2982911cd9daae22c97f34303f9f31f789328c583f595df6979

	The remote EC2 instance was left doing regular sync from 18:33-2017/7/26 to 13:40 2017/7/27, during which half a million blocks where downloaded and executed. No problem (at least no fatal one) was detected and the node ended up connected to 6 peers (with 1 frequently blacklisted). However, although connected to that number of peers, there were no peers to download from (probably due to those peers being synced till before the fork block). Upon restart the no peers to download from continued.

Syncing from etc-client node:

Setup

	Config changes:

sync.min-peers-to-choose-target-block = 1
server-address.interface = "0.0.0.0"

	Minor changes were required on the codebase for enabling using a peer that hadn’t reached the fork block for syncing. On RegularSync [https://github.com/input-output-hk/etc-client/blob/master/src/main/scala/io/iohk/ethereum/blockchain/sync/RegularSync.scala#L269] the forkAccepted required was set to _. On FastSync [https://github.com/input-output-hk/etc-client/blob/master/src/main/scala/io/iohk/ethereum/blockchain/sync/FastSync.scala#L40] the following change was made val peersUsedToChooseTarget = peersToDownloadFrom.

	Set EC2 instance as the only bootstrap node of a local instance (with discovery disabled), having the EC2 instance only ~5000 blocks.

Results

Both regular sync and fast sync were tested, being able in both cases our local node to connect and sync from the remote one. Fast sync was also successfully completed (as the target block was ~4000) and regular sync was started after that.

RUN 1

Hardware - Small EC2 instance

2G RAM, 60G HD (general purpose SSD)

Run from dist created from branch “beta1” (plus outstanding PRs) on Tuesday Aug 1 11:22:44 IST 2017

08:09:04 Block: 1000216/4200094. Peers waiting_for_response/connected: 1/6 (1 blacklisted). State: 18813017/18815028 nodes

11:22:04 Block: 1020600/4200094. Peers waiting_for_response/connected: 3/7 (0 blacklisted). State: 20619238/20621259 nodes.

21:26:34 Block: 1645368/4200094. Peers waiting_for_response/connected: 0/6 (0 blacklisted). State: 21782414/21782414 nodes

RUN 2

EC2 Large Instance (network moderate)
Started - Wed Aug 2 11:19:30 UTC 2017

11:21:43 Block: 28328/4206059. Peers waiting_for_response/connected: 8/8 (0 blacklisted). State: 149027/158735 nodes.

11:56:13 Block: 274360/4206059. Peers waiting_for_response/connected: 7/7 (0 blacklisted). State: 2372650/2379673 nodes

13:10:13 Block: 713144/4206059. Peers waiting_for_response/connected: 6/6 (1 blacklisted). State: 6881071/6896739 nodes

16:14:43 Block: 769912/4206059. Peers waiting_for_response/connected: 5/5 (0 blacklisted). State: 19482675/19490954 nodes

State trie downloaded9 of 4.2 million blocks to go...

17:26:13 Block: 916504/4206059. Peers waiting_for_response/connected: 4/4 (0 blacklisted). State: 21785288/21785288 nodes

Thursday morning only one peer, restart.

07:43:13 Block: 1964520/4206059. Peers waiting_for_response/connected: 1/1 (0 blacklisted). State: 21785288/21785288 nodes

9 Peers after restart...

07:49:13 Block: 1969280/4206059. Peers waiting_for_response/connected: 8/9 (1 blacklisted). State: 21785288/21785288 nodes.

12:10:43 Block: 2931440/4206059. Peers waiting_for_response/connected: 1/7 (0 blacklisted). State: 21785288/21785288 nodes.

Node fully up to date and processing transactions normally...

21:20:43 Block: 4215200. Peers: 3 (0 blacklisted)

Node continues to perform as expected on Friday morning 9am, test concluded...

RUN 3

Windows 10 Home Edition (Version 1607)

Editing Config Files on Windows

The config file are created for Linux, in order to make the files readable on windows use

type misc.conf | more /P > out.conf

And then rename the out.conf to the original file name. Apologies, this will be remedied in later versions.

Intel i7 4GHz CPU

32G RAM
Standard large disk (!?)

First, JRE needed to be installed used latest release v 1.8 147
Then windows does not support paths in application.ini or NativePRNG had to fix that.

Run began successfully at 14.50 pm Wednesday 2nd August.
(Stopped 3 times to check launch error fix on Windows.)

Goal

Check if two mantis instances can connect to each other, share blocks and reach consensus in a private chain

Testing environment

Hardware: Intel(R) Core(TM) i7-3632QM CPU @ 2.20GHz

Mem: 12GB

OS: Ubuntu 16.04.2, 4.4.0-83-generic

JVM: openjdk version “1.8.0_131”

Mantis config

default-genesis.json

{
 "difficulty": "0x0000040000",
 "extraData": "0x11bbe8db4e347b4e8c937c1c8370e4b5ed33adb3db69cbdb7a38e1e50b1b82fa",
 "gasLimit": "0x1388000",
 "nonce": "0x0000000000000042",
 "ommersHash": "0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347",
 "timestamp": "0x0",
 "coinbase": "0x00",
 "mixHash": "0x00",
 "alloc": {}
}

client 1 - network.conf

mantis {

 network {

 server-address {
 # Listening interface for Ethereum protocol connections
 # interface = "127.0.0.1"

 # Listening port for Ethereum protocol connections
 port = 9075
 }

 discovery {
 # Turn discovery of/off
 discovery-enabled = false

 # Set of initial nodes
 bootstrap-nodes = []
 }

 peer {
 network-id = 3333
 }

 rpc {
 port = 8545
 }
 }
}

client 2 - network.conf

mantis {

 network {
 discovery {
 # Turn discovery of/off
 discovery-enabled = false

 # Set of initial nodes
 bootstrap-nodes = [
 "enode://5097eeaa0e10e12629755cfba54957989bfad96e8d3d1707379746e168f17eda39c46dd6deff8cbf83848f2748751cd2bdebe844ae4b40428c0ac90b7163e6e1@127.0.0.1:9075"
]
 }

 peer {
 network-id = 3333
 }
 }
}

Version

commit 24acf16a08fe3be52899ef9e037f807ee88e3f16
Author: Adam Smolarek <adam.smolarek@iohk.io>
Date: Fri Aug 4 13:41:22 2017 +0200

 add todo for further modifications

Test cases

	Startup the two nodes and start mining in client1. Blocks should be broadcasted to client2 :white_check_mark:

	Shutdown miner in client1 and start it up in client2. Blocks should be broadcasted to client1 :white_check_mark:

	Startup miner in client1. Blocks from both clients should be present in resulting blockchain :white_check_mark:

Result

Everything ran as expected

Setup

For tests we set up 10 EC2 instances on a private network, we used genesis as bellow:

{
 "difficulty": "0x400",
 "extraData": "0x00",
 "gasLimit": "0x2fefd8",
 "nonce": "0x0000000000000042",
 "ommersHash": "0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347",
 "timestamp": "0x00",
 "coinbase": "0x00",
 "mixHash": "0x00",
 "alloc": {
 "d7a681378321f472adffb9fdded2712f677e0ba9": {"balance": "1606938044258990275541962092341162602522202993782792835301376"}
 }
}

for mining we used ethminer from https://github.com/Genoil/cpp-ethereum.git from branch 108 which supports CPU mining

we were testing on ubuntu 16.04, to compile ethminer you need to instal some packages:

sudo apt-get -y install software-properties-common
sudo add-apt-repository -y ppa:ethereum/ethereum
sudo apt-get update
sudo apt-get install git cmake libcryptopp-dev libleveldb-dev libjsoncpp-dev libboost-all-dev libgmp-dev libreadline-dev libcurl4-gnutls-dev ocl-icd-libopencl1 opencl-headers mesa-common-dev libmicrohttpd-dev build-essential -y
sudo apt-get install libjsonrpccpp-dev -y

We started ethminer with ethminer -C -F 127.0.0.1:8546 and ours client with sbt -Dconfig.file=/home/ubuntu/node.conf run

Testing

Firstly we run nodes not connected to each other, this way nodes got their own versions of blockchain after chains were ~60 blocks long we connected them together and let them mine and resolve conflicting branches at the same time.

We let them run for 3 days and after checking did not notice any error in logs, nodes are roughly on the same block and they are mining without any issue.

We also checked that we produced blocks with correct ommer.

After that we connected geth classic node and it was able to join network and sync chain from genesis to current block (it was configured for same private network) and it continues ti accepting new blocks after sync was finished

Issue with geth

Also while testing we found out that if geth node is connected only to one node it will not sync if best blocks are too far away in terms of height

eth/fetcher/fetcher.go:631] Peer 010d7622a3242a48: discarded block #16598 [3861d9e4…], distance 3043

what fixed the issue was adding more connections, you can do this with geth console

admin.addPeer("node_address")

etc-client configuration

node.conf file should contains

etc-client {

 client-id = "etc-client"

 client-version = "etc-client/v0.1"

 datadir = "/home/ubuntu/chain_data"

 //File format of the keys (in plain text): publicKey ++ CR/LF ++ privateKey
 keys-file = ${etc-client.datadir}"nodeId.keys"

 keystore-dir = ${etc-client.datadir}"keystore"

 // time the system will wait to shutdown the ActorSystem.
 shutdown-timeout = "15.seconds"

 network {

 protocol-version = "1"

 server-address {
 interface = "public_ip"
 port = 9076
 }

 discovery {
 bootstrap-nodes = [
 //list of nodes in network
]

 bootstrap-nodes-scan-interval = 2 minutes
 }

 peer {
 connect-retry-delay = 20 seconds
 connect-max-retries = 30
 disconnect-poison-pill-timeout = 5 seconds
 wait-for-hello-timeout = 3 seconds
 wait-for-status-timeout = 30 seconds
 wait-for-chain-check-timeout = 15 seconds

 max-blocks-headers-per-message = 200
 max-blocks-bodies-per-message = 200
 max-receipts-per-message = 200
 max-mpt-components-per-message = 400

 max-peers = 200
 network-id = 1
 }

 rpc {
 enabled = true
 interface = "127.0.0.1"
 port = 8546
 apis = "eth,web3,net"
 }
 }

 mining {
 tx-pool-size = 1000
 ommers-pool-size = 30
 block-cashe-size = 30
 coinbase = "aa758c0b47afcafb9751a516e56a7c3332571933"
 pooling-services-timeout = 5.seconds
 }

 blockchain {
 frontier-block-number = "0"
 homestead-block-number = "1150000"
 eip150-block-number = "2500000"
 eip160-block-number = "3000000"
 difficulty-bomb-pause-block-number = "3000000"
 difficulty-bomb-continue-block-number = "5000000"

 // Doc: https://blog.ethereum.org/2016/07/20/hard-fork-completed/
 dao-fork-block-number = "1920000"
 dao-fork-block-total-difficulty = "39490964433395682584"
 dao-fork-block-hash = "94365e3a8c0b35089c1d1195081fe7489b528a84b22199c916180db8b28ade7f"

 chain-id = "3d"

 custom-genesis-file = "/home/ubuntu/custom-genesis.json"

 // YP eq 150
 block-reward = "5000000000000000000"
 }

 fast-sync {
 do-fast-sync = false
 peers-scan-interval = 3.seconds
 blacklist-duration = 30.seconds
 start-retry-interval = 5.seconds
 sync-retry-interval = 5.seconds
 peer-response-timeout = 10.seconds
 print-status-interval = 2.seconds
 persist-state-snapshot-interval = 1.minute

 max-concurrent-requests = 50
 block-headers-per-request = 2048
 block-bodies-per-request = 128
 receipts-per-request = 60
 nodes-per-request = 1000
 min-peers-to-choose-target-block = 2
 target-block-offset = 500

 check-for-new-block-interval = 1.seconds
 block-resolving-depth = 20
 }

 db {
 iodb {
 path = ${etc-client.datadir}"iodb/"
 }
 leveldb {
 path = ${etc-client.datadir}"leveldb/"
 create-if-missing = true
 paranoid-checks = true // raise an error as soon as it detects an internal corruption
 verify-checksums = true // force checksum verification of all data that is read from the file system on behalf of a particular read
 cache-size = 0
 }
 }

 filter {
 filter-timeout = 10.minutes
 filter-manager-query-timeout = 3.seconds
 pending-transactions-manager-query-timeout = 5.seconds
 }

}

akka {
 loggers = ["akka.event.slf4j.Slf4jLogger"]
 loglevel = "DEBUG"
 logging-filter = "akka.event.slf4j.Slf4jLoggingFilter"
 logger-startup-timeout = 30s
}

geth classic configuration

chain.json

{
 "id": "custom",
 "name": "Morden Testnet",
 "genesis": {
 "nonce": "0x0000000000000042",
 "timestamp": "0x00",
 "parentHash": "",
 "extraData": "0x00",
 "gasLimit": "0x2fefd8",
 "difficulty": "0x0400",
 "mixhash": "0x00",
 "coinbase": "0x00",
 "alloc": {
 "d7a681378321f472adffb9fdded2712f677e0ba9": {"balance": "1606938044258990275541962092341162602522202993782792835301376"}
 }
 },
 "chainConfig": {
 "forks": [
 {
 "name": "Homestead",
 "block": 494000,
 "requiredHash": "0x00",
 "features": [
 {
 "id": "difficulty",
 "options": {
 "type": "homestead"
 }
 },
 {
 "id": "gastable",
 "options": {
 "type": "homestead"
 }
 }
]
 },
 {
 "name": "GasReprice",
 "block": 1783000,
 "requiredHash": "0x00",
 "features": [
 {
 "id": "gastable",
 "options": {
 "type": "eip150"
 }
 }
]
 },
 {
 "name": "The DAO Hard Fork",
 "block": 1885000,
 "requiredHash": "0x00",
 "features": []
 },
 {
 "name": "Diehard",
 "block": 1915000,
 "requiredHash": "0x00",
 "features": [
 {
 "id": "eip155",
 "options": {
 "chainID": 62
 }
 },
 {
 "id": "gastable",
 "options": {
 "type": "eip160"
 }
 },
 {
 "id": "difficulty",
 "options": {
 "length": 2000000,
 "type": "ecip1010"
 }
 }
]
 }
],
 "badHashes": [
]
 },
 "bootstrap": [
 //nodes to connect
]
}

Testing environment

Hardware: Lenovo ideapad 310

CPU: Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz, 2592 Mhz

Mem: 8GB

Disk: 300GB

OS: Windows 10

openjdk version "1.8.0_144_b01"

Version

commit 419c2835b26eed9b4309e473cfd5f0e99e4ba12e
Merge: bbd3d508 9fd2e89e
Author: Nicolas Tallar <nicolas.tallar@iohk.io>
Date: Thu Aug 3 17:32:03 2017 -0300

 Merge branch 'phase/beta1' of github.com:input-output-hk/etc-client into fix/keysFileNameWindows

Scenarios tested with results

Syncing (Fast Sync)

Synced for ~7-8 hours without any problems, last status:

15:07:54 Block: 1194192/4213768. Peers waiting_for_response/connected: 6/5 (0 blacklisted). State: 16621537/16634161 nodes.

Size of the database: 5.10GB.

Private chain with mining

Setup

	Miner: Genoil’s Ethereum AMD+NVIDIA GPU Miner v1.1.7 (Windows) - Used via OpenCL.

	Mantis client:
	Setup private chain on Mantis client, with only the Mantis client.

	Imported account for use as coinbase.

Result

Several blocks were mined (with and without transactions), which were included in the blockchain and were reported in Mist.

 To setup geth - etc-client private network:

Create a file named custom.json with blockchain definition:

{
 "id": "custom",
 "name": "Morden Testnet",
 "genesis": {
 "nonce": "0x0000000000000042",
 "timestamp": "0x00",
 "parentHash": "",
 "extraData": "0x00",
 "gasLimit": "0x2fefd8",
 "difficulty": "0x0400",
 "mixhash": "0x00",
 "coinbase": "0x00",
 "alloc": {
 "d7a681378321f472adffb9fdded2712f677e0ba9": {"balance": "1606938044258990275541962092341162602522202993782792835301376"}
 }
 },
 "chainConfig": {
 "forks": [
 {
 "name": "Homestead",
 "block": 494000,
 "requiredHash": "0x00",
 "features": [
 {
 "id": "difficulty",
 "options": {
 "type": "homestead"
 }
 },
 {
 "id": "gastable",
 "options": {
 "type": "homestead"
 }
 }
]
 },
 {
 "name": "GasReprice",
 "block": 1783000,
 "requiredHash": "0x00",
 "features": [
 {
 "id": "gastable",
 "options": {
 "type": "eip150"
 }
 }
]
 },
 {
 "name": "The DAO Hard Fork",
 "block": 1885000,
 "requiredHash": "0x00",
 "features": []
 },
 {
 "name": "Diehard",
 "block": 1915000,
 "requiredHash": "0x00",
 "features": [
 {
 "id": "eip155",
 "options": {
 "chainID": 62
 }
 },
 {
 "id": "gastable",
 "options": {
 "type": "eip160"
 }
 },
 {
 "id": "difficulty",
 "options": {
 "length": 2000000,
 "type": "ecip1010"
 }
 }
]
 }
],
 "badHashes": [
]
 },
 "bootstrap": [
 "enode://fb28713820e718066a2f5df6250ae9d07cff22f672dbf26be6c75d088f821a9ad230138ba492c533a80407d054b1436ef18e951bb65e6901553516c8dffe8ff0@104.155.176.151:30304",
 "enode://afdc6076b9bf3e7d3d01442d6841071e84c76c73a7016cb4f35c0437df219db38565766234448f1592a07ba5295a867f0ce87b359bf50311ed0b830a2361392d@104.154.136.117:30403",
 "enode://21101a9597b79e933e17bc94ef3506fe99a137808907aa8fefa67eea4b789792ad11fb391f38b00087f8800a2d3dff011572b62a31232133dd1591ac2d1502c8@104.198.71.200:30403",
 "enode://fd008499e9c4662f384b3cff23438879d31ced24e2d19504c6389bc6da6c882f9c2f8dbed972f7058d7650337f54e4ba17bb49c7d11882dd1731d26a6e62e3cb@35.187.57.94:30304"
]
}

place it in [geth_data_dir]/custom directory

run geth 3.5 with

./geth --chain=custom --cache=1024 --maxpeers 1 --rpc --rpcapi eth,web3,personal,admin --datadir geth_data_dir --rpcport 8545 --port 30309 --nodiscover --identity "TestnetMainNode" --networkid 1

run geth 3.4 with

./geth --chain-config="[PATH_TO_CUSTOM_JSON]" --cache=1024 --maxpeers 1 --rpc --rpcapi eth,web3,personal,admin --datadir geth_data_dir --rpcport 8545 --port 30309 --nodiscover --identity "TestnetMainNode" --networkid 1

Add file with custom etc-client configuration private-genesis.json :

{
 "extraData": "0x00",
 "nonce": "0x0000000000000042",
 "gasLimit": "0x2fefd8",
 "difficulty": "0x400",
 "ommersHash": "0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347",
 "timestamp": "0x00",
 "coinbase": "0x00",
 "mixHash": "0x00",
 "alloc": {
 "d7a681378321f472adffb9fdded2712f677e0ba9": {"balance": "1606938044258990275541962092341162602522202993782792835301376"}
 }
}

update application.conf

set bootstrap-nodes to geth node address
set coinbase to some address
set custom-genesis-file to point to private-genesis.json
set do-fast-sync = false

You can get geth node address by adding console
And running geth with

geth --chain=custom --cache=1024 --maxpeers 1 --rpc --rpcapi eth,web3,personal,admin --datadir geth_data_dir --rpcport 8545 --port 30309 --nodiscover --identity "TestnetMainNode" --networkid 1 console

then in console you can execute admin.nodeInfo command which prints node address

after that you can run etc-client with sbt run

to mine with ours client use ethminer ethminer -C -F 127.0.0.1:8545
to mine with geth use

./geth --chain=custom --cache=1024 --maxpeers 1 --rpc --rpcapi eth,web3,personal,admin --datadir geth_data_dir --rpcport 8545 --port 30309 --nodiscover --identity "TestnetMainNode" --networkid 1 --mine --etherbase '0x4963d1B82050A41af54a8018Da9f04341b16910b'

Testing environment

Hardware: Clevo P751ZM

CPU: Intel(R) Xeon(R) CPU E3-1231 v3 @ 3.40GHz,

Mem: 16GB

Disk: Crucial 275GB SATA SSD MX300 M.2 2280

OS: Fedora 26, kernel 4.11

openjdk version “1.8.0_131”

Config changes

Maximum block headers in a single response message (as a blockchain host)
max-blocks-headers-per-message = 100

Maximum block bodies in a single response message (as a blockchain host)
max-blocks-bodies-per-message = 100

Maximum transactions receipts in a single response message (as a blockchain host)
max-receipts-per-message = 100

Maximum MPT components in a single response message (as a blockchain host)
max-mpt-components-per-message = 200

Response time-out from peer during sync. If a peer fails to respond within this limit, it will be blacklisted
peer-response-timeout = 30.seconds

Version

commit 0aaef18b8675ab5176e7a48b8d810e247450f3b6 (HEAD -> phase/beta1, origin/phase/beta1)
Merge: 454931d5 5b2e6a08
Author: Alan Verbner <alan.verbner@iohk.io>
Date: Tue Jul 25 14:19:38 2017 -0300

Merge branch 'feature/referenceCountPrunning' into phase/beta1

Result

Fast sync finished in 16-17 hours (with breaks, this is the total time app was running).

Started at 2017-07-26 9:30am, finished at 2017-07-27 1pm

Datadir size at block 4166064 is ~15G.

Syncing continues in “regular” mode.

 How To’s

Test Reports

 _static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

